Progress in simulating the optical properties of ice clouds and graupel/Snow in support of the CERES Science Team

James Coy, Jiachen Ding, Masanori Saito

Ping Yang (presenting author)

Texas A&M University

An Ice clouds model is needed for remote sensing implementation and flux computation

A-Train satellite constellation

A consistent Ice optical property model is essential to a reliable estimation of fluxes at the surface and TOA from satellite observations.

Ice cloud property retrieval

- Passive shortwave measurements
- Passive thermal infrared measurements
- Lidar measurements

Broadband RT calculation

- Radiative parameterization
- Mass-diameter relationship

Flux Biases due to neglecting LW scattering

Kuo, C.-P., P. Yang, X. Huang, D. Feldman, M. Flanner, C. Kuo, and E. J. Mlawer, 2017: Journal of Advances in Modeling Earth Systems.

An Improved Two Habit Model (THM)

Major updates in the improved THM

- 1. The improved THM uses an ensemble of 20 irregular hexagonal columns with a tilting parameter (σ_t) of 0.15 instead of a severely roughened hexagonal column ($\sigma_r = 0.5$) used in current Current THM (Loeb, Yang et al., 2018). This choice is to avoid some challenges in light scattering computations concerning ice crystal's surface roughness.
- 2. Substantial improvement in backscattering resulting from using rigorous calculations.
- 3. Refined the geometry of 20-column aggregates.

An Improved Two Habit Model (THM)

- Same size-dependent, a continuous mixing ratio similar to the current THM (Loeb et al., 2018).
- A preliminary version of an improved THM database has been developed.
- Uses Volume-Projected Area Equivalent Diameter (D_{VA}) size characterization.

$$D_{VA} = \frac{3V_p}{2A_s}$$

 V_p : Particle volume A_s : Projected area

$$f_{single} = \begin{cases} e^{-0.005(D_{VA} - 30), D_{VA} \ge 30} \\ 1, D_{VA} < 30 \end{cases}$$

	Current THM	Improved THM (preliminary version)	Improved THM (final version)
Wavelength	470 bins	42 bins	470 bins
	(0.2 – 200 μm)	(0.2 – 20 μm)	(0.2 – 200 μm)
Size	189 bins	59 bins	189 bins
	(2.0 – 10000.0 μm)	(2.0 – 1000.0 μm)	(2.0 – 10000.0 μm)

Updates 1: Single Column Tilting Parameter Optimization

- The single column ensemble of the improved THM has $\sigma_t=0.15$.
 - $\sigma_t = 0.50$ results in inconsistent magnitudes of the extinction efficiency (Q_{ext}) compared to severely roughened hexagonal columns ($\sigma_r = 0.50$).
 - A smaller σ_t results in more consistent magnitudes of Q_{ext} .
- Further investigation would need to further optimize σ_t for irregular single column ensemble.

Improvement in Backscattering using a combination of the Improved Geometric Optics Method (IGOM) and the Physical-Geometric Optics Method (PGOM)

- Development of an improved THM involves a huge burden from the perspective of numerical computation; in particular,
 PGOM is computationally expensive for 20-column aggregate calculations.
- Combination of IGOM calculations and PGOM-based backscattering parameterizations
 - IGOM calculations: Entire scattering angle range.
 - Parameterization: Correct IGOM calculations for 170° – 180° scattering angles.

Improvement in Backscattering

• The backscattering enhancement ($\xi_{PGOM}(\theta)$) is parameterized with the Cauchy distribution ($F(\theta)$):

$$\xi_{PGOM}(\theta) = \frac{P_{11,PGOM}(\theta)}{P_{11,PGOM}(170^{\circ})} = 1 + F(\theta) - F(170^{\circ}), \tag{1}$$

where

$$F(\theta) = c_1 \frac{1}{\left\{c_2 \pi \left(1 - \frac{\theta}{180^{\circ}}\right)\right\}^2 + 1}.$$
 (2)

• θ is the scattering angle, ranged from $170^{\circ} - 180^{\circ}$; $P_{11,PGOM}$ is the PGOM calculated P_{11} phase function; and c_1 and c_2 are parameters represented as:

$$c_1 = d_1 * [1 - \tanh(a_0 * V_{abs} + a_1)]$$
(3)

$$c_2 = d_0 * kD \tag{4}$$

- kD is the size parameter and V_{abs} is dependent on the imaginary part of the refractive index (m_i) and kD.
- d_0 , d_1 , a_0 , and a_1 are constants estimated from regressions.

Improvement in Backscattering

 With optimized coefficients of the parameterization, the phase function is obtained from

$$P_{11,enhanced}(\theta) = \xi_{PGOM}(\theta) * P_{11,IGOM}(\theta)$$
(5)

- $P_{11,enhanced}$ has been shown to be fairly consistent with PGOM calculations.
- Reduced substantial computational burden
- → Feasible to develop the future THM single-scattering property database that covers entire size and spectral ranges.

Geometry of 20-column aggregates

- The backscattering enhancement is applied to single column and 20-column aggregate ensembles separately.
- After the application, the THM database calculations are conducted.
- Bottom figure shows THM P_{11} between single column and aggregate P_{11} s at $D_{VA}=100~\mu m$.
 - THM backscattering is shown to be enhanced compared to IGOM-only.

Active-Passive Consistency Check

IIR=Imaging Infrared Radiometer; COT=Cloud Optical Thickness

Improved THM has reasonably robust backscattering, leading to consistency between passive and active COT retrievals.

Cirrus cloud climatology

Physics-based active-passive synergistic retrievals of ice cloud properties

 $CTT < -40^{\circ}C$

Single-layer ice

COT < 3.6

- Lidar + IR signals show sensitivity to the whole range of cirrus cloud COT (e.g., τ = 0–3.6).
- Decreased average COT for cirrus clouds where optically thin clouds (τ < 0.1) are dominant due to sufficient sensitivity of lidar measurements to these optically thin clouds.

Graupel and Snow Particles

Radiative effects of graupel/snowflakes are not negligible (Michibata et al., 2019).

Example images of in-situ measured graupel/snowflakes (Gergely et al., 2017).

Are ice cloud optical property models applicable to graupel/snowflakes?

→No, they are not applicable due to various ice mass density values. We need to develop realistic graupel/snow models.

Random points-clustering-convex hull algorithm

Step 1: generate random points in a certain shape

Step 2: cluster points into some random groups

Step 3: create a convex polyhedron for each point group

Examples: Graupel

Examples: Snowflake

IGOM computations

Maximum dimension: 5 mm

Wavelength: 355 nm

Asymmetry factor-Graupel

IGOM computations

Asymmetry factor-Snowflake

Different Ice Mass Ratio (MR)

Phase matrix

Maximum dimension: 5 mm

Wavelength: 355 nm

Conical shapes

Different Ice Mass Ratio (MR)

Phase matrix

Maximum dimension: 1 mm

Wavelength: 355 nm

Dendrite shapes

Different Shapes-Graupel

Phase matrix

Maximum dimension: 5 mm

Wavelength: 355 nm

Mass ratio: 0.9

Different Shapes-Snowflake

Phase matrix

Summary and Future Plan

Development of a new ice crystal optical property database is in progress:

- An improved THM
 - Improved ice crystal shape models
 - Improved backscattering computations
 - → Active-passive sensor-based retrieval consistency
- Graupel/Snow crystal model
 - Realistic graupel/snow particle shape models
 - Various ice mass density ratios
 - → The single-scattering properties of graupel/snow are realistic.
- Near future plan:
 - 1. Deliver a preliminary improved THM database
 - 2. Extensive validations and application studies
 - 3. Develop a database of graupel/snowflakes

Improved THM

Graupel/Snow

